時間:2023-03-22 17:36:43
緒論:在尋找寫作靈感嗎?愛發(fā)表網(wǎng)為您精選了8篇數(shù)學(xué)建模論文,愿這些內(nèi)容能夠啟迪您的思維,激發(fā)您的創(chuàng)作熱情,歡迎您的閱讀與分享!
在過去常規(guī)的數(shù)學(xué)分析教學(xué)課程只要以公式推導(dǎo)、定理證明為主要教學(xué)內(nèi)容,卻對數(shù)學(xué)分析的應(yīng)用思想以及融合貫通少有講授。這就導(dǎo)致學(xué)生們雖熟練掌握這門課程的理論知識,但是學(xué)生們將掌握的知識應(yīng)用于實(shí)際問題的解決過程中卻存在效果不滿意,或無法學(xué)以致用。因此學(xué)生會形成數(shù)學(xué)的掌握僅僅是為了考試而學(xué)習(xí),無現(xiàn)實(shí)意義等錯誤思想。若在數(shù)學(xué)分析的教學(xué)過程中融合數(shù)學(xué)建模方式進(jìn)行教學(xué),利用數(shù)學(xué)建模思想來熏陶學(xué)生,通過通過將數(shù)學(xué)的意義思想完整的進(jìn)行介紹,將數(shù)學(xué)概念與公式的實(shí)際源頭與應(yīng)用情況進(jìn)行宣教,使學(xué)生充分了解數(shù)學(xué)與實(shí)際生活之間存在的密切關(guān)系。首先,通過利用數(shù)學(xué)建模思想融入數(shù)學(xué)分析的教學(xué)課程中可有效促進(jìn)學(xué)生數(shù)學(xué)的行使效果。適當(dāng)配合數(shù)學(xué)模型方式糅合數(shù)學(xué)分析的理論知識與實(shí)際方法,可幫助學(xué)生迅速理解數(shù)學(xué)分析的內(nèi)容概念,全面掌握理論知識與實(shí)踐能力。其次,利用數(shù)學(xué)建模思想促進(jìn)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,以改善在教學(xué)過程中因理論性復(fù)雜、定義生澀難懂導(dǎo)致學(xué)生學(xué)習(xí)積極性不高以及枯燥乏味等數(shù)學(xué)教學(xué)問題。因此,在數(shù)學(xué)分析的教學(xué)中融合數(shù)學(xué)建模教學(xué)方式具有巨大的應(yīng)用價值。
2數(shù)學(xué)建模思想在概念教學(xué)中的滲透
按照大范圍來講,數(shù)學(xué)分析的內(nèi)容中包含了函數(shù)、導(dǎo)數(shù)、積分等數(shù)學(xué)概念,這類概念均屬于實(shí)際事物數(shù)量表現(xiàn)或空間形式概括而來的數(shù)學(xué)模型。在數(shù)學(xué)教學(xué)過程我們可以根據(jù)概念的具體事物原型或平時生活中易見到的事物進(jìn)行引用,讓學(xué)生了解到理論上的概念性知識不僅僅存在與課本中,更與日常生活中具有緊密的關(guān)系。對此,老師在教學(xué)相關(guān)概念知識時,最好聯(lián)系實(shí)際,創(chuàng)造合適的學(xué)習(xí)環(huán)境,為學(xué)生在學(xué)習(xí)過程中通過適當(dāng)?shù)挠^察、想象、研究、驗(yàn)證等方式來主導(dǎo)學(xué)生的教學(xué)活動。例如微積分教學(xué)中,剛開始感覺其較為抽象籠統(tǒng),不過仔細(xì)觀察其形成過程會發(fā)現(xiàn)其實(shí)具有較多的基礎(chǔ)原型,通過旋轉(zhuǎn)體體積、曲邊梯形面積等具體問題緊密聯(lián)系,應(yīng)用微元法求解即可得出積分這個較為抽象的概念。通過適當(dāng)?shù)娜〔模⒏拍钅P?,引?dǎo)學(xué)生對教學(xué)的積極興趣,可比簡單的利用數(shù)學(xué)符號來描述抽象概念要具體生動得多。
3數(shù)學(xué)建模思想在定理證明中的滲透
在數(shù)學(xué)分析課程中存在較多的定理,而怎樣在教學(xué)過程中讓學(xué)生熟練掌握帶來并應(yīng)用則成為目前數(shù)學(xué)分析教學(xué)中較為困難的。其實(shí)在書本中大部分定理是有著具體的意義,不過在通過籠統(tǒng)的刻印組書本中后導(dǎo)致定理創(chuàng)造者實(shí)際想法無法清晰表現(xiàn)在其中,致使學(xué)生在接受定理教學(xué)中感到茫然。對此,在定理教學(xué)過程老師應(yīng)結(jié)合該定理知識的源指出處以及歷史淵源,從而促進(jìn)學(xué)生的求知欲取進(jìn)一步了解該定理的意義與作用。同時應(yīng)用建模思想將定理作為模型的一類,利用前期設(shè)計(jì)的特定問題引導(dǎo)學(xué)生逐步發(fā)現(xiàn)定理定論,通過這種方式讓學(xué)生在吸收定理知識的過程中體驗(yàn)到研究探索發(fā)現(xiàn)的重要性,為學(xué)生樹立的創(chuàng)新觀念。
4數(shù)學(xué)建模思想在課題中的滲透
數(shù)學(xué)分析教學(xué)中需要講解大量課題,通過對具有代表性的課題進(jìn)行講解以達(dá)到促進(jìn)應(yīng)用知識解題的能力并鞏固。但是在過去傳統(tǒng)的課題講解中,與應(yīng)用相關(guān)的問題教學(xué)較少,僅有的少部分也是條件滿足解答肯定的情況,這不利于學(xué)生創(chuàng)新性思維培養(yǎng)。因此,在課題講解中盡量選取以具體應(yīng)用的問題作為例題,設(shè)置相應(yīng)的問題來引導(dǎo)學(xué)生發(fā)現(xiàn)其中存在的錯誤,并結(jié)合自身知識來解決其錯誤,通過建立模型的方式來進(jìn)一步鞏固自身知識。
5數(shù)學(xué)建模思想在考試命題中的滲透
目前數(shù)學(xué)分析的教學(xué)考試中試題的設(shè)置普遍以書本課題為主,又或者直接將某些例題設(shè)置成選擇或填空的答題方式,卻缺少開放型的試題或全面考察學(xué)生是否掌握數(shù)學(xué)知識應(yīng)用解決實(shí)際問題的試題??赡苣壳斑@種考試設(shè)題方式對老師的閱卷提供了便利,但是往往也造成部分學(xué)生在課本考試中分?jǐn)?shù)較高,但在解決實(shí)際具體問題往往存在不足,對學(xué)生思維中形成了為考試而學(xué)習(xí),忽略了對數(shù)學(xué)概念的理解,導(dǎo)致具體問題解決能力不足。對此,可利用數(shù)學(xué)建模思維去設(shè)置一部分開放型試題,利于學(xué)生在解題過程中將所學(xué)的數(shù)學(xué)建模方式應(yīng)用與具體中,以此來觀察學(xué)生的數(shù)學(xué)素質(zhì)以及知識水平并適當(dāng)修改教學(xué)方案。又或者通過命題論文的方式來了解學(xué)生綜合水平,學(xué)生通過將自身所學(xué)知識進(jìn)行適當(dāng)?shù)目偨Y(jié),探討自身學(xué)習(xí)體會,來加強(qiáng)學(xué)生對相關(guān)知識的進(jìn)一步理解,深化了數(shù)學(xué)建模思想的滲透。
6結(jié)語
隨著高職教育改革的不斷深化,高職院校畢業(yè)生的就業(yè)能力和競爭力有所提高,就業(yè)狀況不斷改善,但畢業(yè)生就業(yè)形勢仍然十分嚴(yán)峻。這固然有節(jié)節(jié)攀升的畢業(yè)生數(shù)、畢業(yè)生自身就業(yè)觀念、供需結(jié)構(gòu)失衡等方面的問題,但畢業(yè)生綜合素質(zhì)不夠高、就業(yè)能力不夠強(qiáng)等方面的問題依然突出。就業(yè)能力是指學(xué)生在校期間通過知識學(xué)習(xí)和綜合素質(zhì)開發(fā)而獲得的能夠?qū)崿F(xiàn)就業(yè)理想,滿足社會需要,保持工作及晉升和繼續(xù)發(fā)展的內(nèi)在素質(zhì)和才能,是一種與職業(yè)相關(guān)的綜合能力。“職業(yè)素養(yǎng)”、“專業(yè)知識與技能”、“學(xué)習(xí)能力”、“實(shí)踐能力”、“社會適應(yīng)能力”、“創(chuàng)新能力”、“與人交往能力”、“規(guī)劃與應(yīng)聘能力”等,是高職院校學(xué)生應(yīng)具備的基本就業(yè)能力。對于高職院校畢業(yè)生,用人單位更看重其“專業(yè)技能”、“實(shí)際操作能力”、“學(xué)習(xí)能力”、“敬業(yè)精神”“、溝通協(xié)調(diào)能力”、“創(chuàng)新能力”等方面的能力素質(zhì)。而“學(xué)習(xí)能力”、“運(yùn)用知識解決問題能力”、“溝通協(xié)調(diào)能力”、“創(chuàng)新能力”這些基本就業(yè)能力是高職院校學(xué)生比較欠缺的素質(zhì)。
二數(shù)學(xué)建模對培養(yǎng)學(xué)生就業(yè)能力的作用
筆者在指導(dǎo)學(xué)生參加全國大學(xué)生數(shù)學(xué)建模競賽的過程中,體會到數(shù)學(xué)建模活動對高職院校的學(xué)生的綜合素質(zhì)和就業(yè)能力的提升起著十分重要的作用,有利于高職教育人才培養(yǎng)目標(biāo)的實(shí)現(xiàn)。
1提升學(xué)生自主學(xué)習(xí)的能力
數(shù)學(xué)建模競賽賽題所涉及的知識面較廣,甚至有許多是學(xué)生未曾涉及過的領(lǐng)域(如,2012年賽題中的C題:“腦卒中發(fā)病環(huán)境因素分析及干預(yù)”與醫(yī)學(xué)領(lǐng)域有關(guān)),學(xué)生僅憑已有的知識是難以甚至不能完成競賽,這就要求學(xué)生不僅需要復(fù)習(xí)好已經(jīng)學(xué)過的知識,還必須積極、主動去學(xué)習(xí)新知識,擴(kuò)大知識面,如,數(shù)學(xué)軟件的使用、論文寫作方法、不包括在高職人才培養(yǎng)方案中的一些數(shù)學(xué)內(nèi)容(如數(shù)值計(jì)算等)、查找相關(guān)文獻(xiàn)資料并從大量文獻(xiàn)中吸取所需知識的技巧等知識,學(xué)生都須通過自主學(xué)習(xí)的途徑來掌握。這個過程有助于學(xué)生自主學(xué)習(xí)能力的提升。
2提升學(xué)生運(yùn)用知識解決問題的能力
數(shù)學(xué)建模是一個將錯綜復(fù)雜的實(shí)際問題簡化、抽象為合理的數(shù)學(xué)結(jié)構(gòu)的過程。在建模過程中,就是要針對生產(chǎn)或生活中的實(shí)際問題,通過觀察和研究實(shí)際對象的固有特征和內(nèi)在規(guī)律,抓住問題的主要矛盾,結(jié)合數(shù)學(xué)及其他專業(yè)知識的理論和方法去分析、建立起反映實(shí)際問題的數(shù)量關(guān)系。這個過程就是運(yùn)用所學(xué)的數(shù)學(xué)知識和其他專業(yè)知識的過程。數(shù)學(xué)建模競賽題涉及的數(shù)據(jù)量往往大且復(fù)雜,求解、運(yùn)算過程十分繁瑣,手工計(jì)算很難甚至無法得到結(jié)果,需要使用計(jì)算機(jī)來輔助解決問題,例如,常使用MATLAB等數(shù)學(xué)軟件進(jìn)行模型初建、模型合理性分析、模型改進(jìn)等;使用SPSS等數(shù)理統(tǒng)計(jì)類軟件,完成數(shù)據(jù)處理、圖形變換和問題求解等工作,這是個運(yùn)用計(jì)算機(jī)知識的過程??梢姡瑪?shù)學(xué)建模能培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)及其他專業(yè)知識、計(jì)算機(jī)知識等解決實(shí)際問題的能力,有利于拓寬學(xué)生的就業(yè)技能。
3提升學(xué)生分析問題和創(chuàng)造性解決問題的能力
培養(yǎng)創(chuàng)新能力數(shù)學(xué)建模賽題來自于實(shí)際問題之中,有極強(qiáng)的實(shí)際應(yīng)用背景,而對競賽選手完成的答卷(論文)的評價一般沒有標(biāo)準(zhǔn)答案,評價時主要是看對問題所做假設(shè)的合理性、建模的創(chuàng)造性、結(jié)論的正確性和文字表述的清晰程度,評審者更青睞有獨(dú)特創(chuàng)意的論文。這就要求參賽學(xué)生充分發(fā)揮想像力、創(chuàng)造力,在通過分析、討論,迅速洞察問題的實(shí)質(zhì)和特征之后,做出合理的假設(shè),并綜合運(yùn)用數(shù)學(xué)知識和其他相關(guān)知識,創(chuàng)造性地確定或建立數(shù)學(xué)模型??梢?,數(shù)學(xué)建模過程是個提升學(xué)生的分析問題能力,創(chuàng)造性解決問題的能力的過程,具有培養(yǎng)學(xué)生創(chuàng)新能力的作用。
4提升學(xué)生的團(tuán)結(jié)協(xié)作能力
數(shù)學(xué)建模競賽不同于一般競賽,單獨(dú)一個隊(duì)員是無法完成競賽的,必須通過團(tuán)隊(duì)三隊(duì)員共同的努力,才能在72個小時內(nèi)完成論文,交上答卷。這要求在競賽的過程中,需要根據(jù)隊(duì)員的特點(diǎn),進(jìn)行分工合作,發(fā)揮各自的長處,發(fā)揮團(tuán)隊(duì)的整體綜合實(shí)力。在團(tuán)隊(duì)中,由有較強(qiáng)組織協(xié)調(diào)能力的隊(duì)員來負(fù)責(zé)協(xié)調(diào)三人的關(guān)系,安排工作流程和工作任務(wù);由有較強(qiáng)寫作能力的隊(duì)員來保證寫出較流暢的論文;由有較強(qiáng)計(jì)算機(jī)應(yīng)用能力的隊(duì)員來使用數(shù)學(xué)軟件,負(fù)責(zé)建立、檢驗(yàn)數(shù)學(xué)模型;競賽過程中,隊(duì)員間必須精誠團(tuán)結(jié)、相互配合、集體攻關(guān),才能在競賽中取勝。因此,數(shù)學(xué)建模競賽過程是個提升學(xué)生團(tuán)結(jié)協(xié)作能力、培養(yǎng)學(xué)生的團(tuán)隊(duì)精神的過程,這對培養(yǎng)學(xué)生適應(yīng)社會的能力起到積極的作用。
三高職數(shù)學(xué)建模課程教學(xué)改革的思考毋庸置疑
1.數(shù)學(xué)建模簡介
1985年,數(shù)學(xué)建模競賽首先在美國舉辦,并在高等院校廣泛開設(shè)相關(guān)課程。我國在1992年成功舉辦了首屆大學(xué)生數(shù)學(xué)競賽,并從1994年起,國家教委正式將其列為全國大學(xué)生的四項(xiàng)競賽之一。數(shù)學(xué)建模是分為國內(nèi)和國外競賽兩種,每年舉行一次。三人為一隊(duì),成員各司其職:一個有扎實(shí)的數(shù)學(xué)功底,再者精于算法的實(shí)踐,最后一個是擁有較好的文采。數(shù)學(xué)建模是運(yùn)用數(shù)學(xué)的語言和工具,對實(shí)際問題的相關(guān)信息(現(xiàn)象、數(shù)據(jù)等)加以翻譯、歸納的產(chǎn)物。數(shù)學(xué)模型經(jīng)過演繹、求解和推斷,運(yùn)用數(shù)學(xué)知識去分析、預(yù)測、控制,再通過翻譯和解釋,返回到實(shí)際問題中[1]。數(shù)學(xué)建模培養(yǎng)了學(xué)生運(yùn)用所學(xué)知識處理實(shí)際問題的能力,競賽期間,對指導(dǎo)教師的綜合能力提出了更高的要求。
2.數(shù)學(xué)建??萍颊撐淖珜憣W(xué)生個人能力成長的幫助
2.1.提供給學(xué)生主動學(xué)習(xí)的空間
在當(dāng)今知識經(jīng)濟(jì)時代,知識的傳播和更新速度飛快,推行素質(zhì)教育是根本目標(biāo),授人與魚不如授人與漁。學(xué)生掌握自學(xué)能力,能有效的彌補(bǔ)在課堂上學(xué)得的有限知識的不足。數(shù)學(xué)建模所涉及到的知識面廣,除問題相關(guān)領(lǐng)域知識外,還要求學(xué)生掌握如數(shù)理統(tǒng)計(jì)、最優(yōu)化、圖論、微分方程、計(jì)算方法、神經(jīng)網(wǎng)絡(luò)、層次分析法、模糊數(shù)學(xué)、數(shù)學(xué)軟件包的使用等。多元的學(xué)科領(lǐng)域、靈活多變的技能方法是學(xué)生從未接觸過的,并且也不可能在短時間內(nèi)由老師一一的講解清楚,勢必會促使學(xué)生通過自學(xué)、探討的方式來將其研懂。給出問題,讓學(xué)生針對問題去廣泛搜集資料,并將其中與問題有關(guān)的信息加以消化,化為己用,解決問題。這樣的能力將對學(xué)生在今后的工作和科研受益匪淺[2]。
在培訓(xùn)期間,大部分學(xué)生會以為老師將把數(shù)學(xué)建模比賽所涉及到的知識全部傳授給學(xué)生,學(xué)生只要在那里坐著聽老師講就能參加比賽拿到名次了。但是當(dāng)?shù)弥傎愔饕蓪W(xué)生自學(xué)完成,老師只是起引導(dǎo)作用時,有部分學(xué)生選擇了放棄。堅(jiān)持下來的學(xué)生,他們感謝學(xué)校給與他們這樣能夠培養(yǎng)個人能力的機(jī)會,對他們今后受用匪淺!
2.2.體驗(yàn)撰寫綜合運(yùn)用知識和方法解決實(shí)際問題這一系列論文的過程
學(xué)生在撰寫數(shù)學(xué)建??萍颊撐牡臅r候,不光要求學(xué)生具備一定的數(shù)學(xué)功底、有良好的計(jì)算機(jī)應(yīng)用能力、還要求學(xué)生具備相關(guān)領(lǐng)域知識,從實(shí)際問題中提煉出關(guān)鍵信息,并運(yùn)用所學(xué)知識對這些關(guān)鍵信息加以抽象、建立模型。這也是教師一直倡導(dǎo)學(xué)生對所學(xué)知識不光要記住,而且要會運(yùn)用。千萬不要讀死書,死讀書,讀書死。
2.3.培養(yǎng)了學(xué)生的創(chuàng)新意識和實(shí)踐能力
在撰寫過程中潛移默化的培養(yǎng)了學(xué)生獲取新知識、新技術(shù)、新方法的能力,并在解決實(shí)際問題的過程中培養(yǎng)學(xué)生的創(chuàng)新意識和實(shí)踐能力。有別于其他競賽活動,數(shù)學(xué)建模競賽培養(yǎng)學(xué)生運(yùn)用所學(xué)知識將實(shí)際問題數(shù)字化的能力,學(xué)生要有良好的洞察力,具有從現(xiàn)象抓本質(zhì)的能力。給出的實(shí)際問題,沒有唯一的解決方案,要求學(xué)生大膽假設(shè),運(yùn)用所學(xué)知識將問題由最簡單、最直接的科學(xué)方法求解出來[3]。
2.4.團(tuán)隊(duì)精神的培養(yǎng)。
數(shù)學(xué)建模競賽是由三人組隊(duì)參加比賽的集體項(xiàng)目。三個人必須要配合默契,團(tuán)結(jié)協(xié)作,發(fā)揮各自的優(yōu)勢,深刻理解了由三人組隊(duì)的規(guī)則,充分發(fā)揮團(tuán)隊(duì)精神;不能夸大個人能力,不能自大驕傲,要本著整體高于個人的原則,積極合作。競賽所提倡的團(tuán)隊(duì)精神,將會培養(yǎng)學(xué)生尊重他人,具有合作意識,,取長補(bǔ)短,團(tuán)結(jié)協(xié)作,患難與共的集體主義優(yōu)良品格[4]。
有些隊(duì)伍在組隊(duì)前期,由于每個人的性格迥異,再加上年齡小,經(jīng)常會因瑣碎小事起爭端。比如看待問題、解決問題的思路不統(tǒng)一;生活習(xí)慣造成其他人的反感;說話處事不能圓滿表達(dá),致使產(chǎn)生矛盾等。經(jīng)過一年的團(tuán)隊(duì)磨合,學(xué)生看問題不會從自我出發(fā),面對問題時,會先聆聽他人的想法,然后再闡述自己的觀點(diǎn);生活習(xí)慣也趨于常理化,不會特立獨(dú)行;為人處世不會有那么多棱角,會選擇以讓人能夠接受的方式表達(dá)出來。
2.5.誠信。
比賽期間,每支參賽隊(duì)伍都會以誠信為原則,絕不會去竊取他人作品,實(shí)事求是。作為學(xué)生的指導(dǎo)教師更是以身作則,要求學(xué)生自己獨(dú)立完成,要脫離教師的指導(dǎo),并且會在全程進(jìn)行監(jiān)督。
論文關(guān)鍵詞:遺傳算法
1 引言
“物競天擇,適者生存”是達(dá)爾文生物進(jìn)化論的基本原理,揭示了物種總是向著更適應(yīng)自然界的方向進(jìn)化的規(guī)律??梢姡镞M(jìn)化過程本質(zhì)上是一種優(yōu)化過程,在計(jì)算科學(xué)上具有直接的借鑒意義。在計(jì)算機(jī)技術(shù)迅猛發(fā)展的時代,生物進(jìn)化過程不僅可以在計(jì)算機(jī)上模擬實(shí)現(xiàn),而且還可以模擬進(jìn)化過程,創(chuàng)立新的優(yōu)化計(jì)算方法,并應(yīng)用到復(fù)雜工程領(lǐng)域之中,這就是遺傳算法等一類進(jìn)化計(jì)算方法的思想源泉。
2 遺傳算法概述
遺傳算法是將生物學(xué)中的遺傳進(jìn)化原理和隨[1]優(yōu)化理論相結(jié)合的產(chǎn)物,是一種隨機(jī)性的全局優(yōu)算法。遺傳算法不但具有較強(qiáng)的全局搜索功能和求解問題的能力,還具有簡單通用、魯棒性強(qiáng)、適于并行處理等特點(diǎn)數(shù)學(xué)建模論文,是一種較好的全局優(yōu)化搜索算法。在遺傳算法的應(yīng)用中,由于編碼方式和遺傳算子的不同,構(gòu)成了各種不同的遺傳算法。但這些遺傳算法都有共同的特點(diǎn),即通過對生物遺傳和進(jìn)化過程中選擇、交叉、變異機(jī)理的模仿,來完成對問題最優(yōu)解的自適應(yīng)搜索過程?;谶@個共同點(diǎn),Holland的遺傳算法常被稱為簡單遺傳算法(簡記SGA),簡單遺傳算法只使用選擇算子、交叉算子和變異算子這三種基本遺傳算子,其遺傳進(jìn)化操作過程簡單,容易理解,是其他一些遺傳算法的雛形和基礎(chǔ),這種改進(jìn)的或變形的遺傳算法,都是以其為基礎(chǔ)[1]。
2.1遺傳算法幾個基本概念
個體(IndividualString):個體是遺傳算法中用來模擬生物染色體的一定數(shù)目的二進(jìn)制串,該二進(jìn)制串用來表示優(yōu)化問題的滿意解。
種群(population):包含一組個體的群體,是問題解的集合。
基因模式(Sehemata):基因模式是指二進(jìn)制位串表示的個體中,某一個或某些位置上具有相似性的個體組成的集合,也稱模式。
適應(yīng)度(Fitness):適應(yīng)度是以數(shù)值方式來描述個體優(yōu)劣程度的指標(biāo),由評價函數(shù)F計(jì)算得到。F作為求解問題的目標(biāo)函數(shù),求解的目標(biāo)就是該函數(shù)的最大值或最小值。
遺傳算子(genetic operator):產(chǎn)生新個體的操作,常用的遺傳算子有選擇、交叉和變異。
選擇(Reproduetion):選擇算子是指在上一代群體中按照某些指標(biāo)挑選出的,參與繁殖下一代群體的一定數(shù)量的個體的一種機(jī)制龍?jiān)雌诳?。個體在下一代種群中出現(xiàn)的可能性由個體的適應(yīng)度決定,適應(yīng)度越高的個體,產(chǎn)生后代的概率就越高。
交叉(erossover):交叉是指對選擇后的父代個體進(jìn)行基因模式的重組而產(chǎn)生后代個體的繁殖機(jī)制。在個體繁殖過程中,交叉能引起基因模式的重組,從而有可能產(chǎn)生含優(yōu)良性能的基因模式的個體。交叉可以發(fā)生在染色體的一段基因串或者多段基因串。交叉概率(Pc)決定兩個個體進(jìn)行交叉操作的可能性數(shù)學(xué)建模論文,交叉概率太小時難以向前搜索,太大則容易破壞高適應(yīng)度的個體結(jié)構(gòu),一般Pc取0.25~0.75
變異(Mutation):變異是指模擬生物在自然的遺傳環(huán)境中由于某種偶然因素引起的基因模式突變的個體繁殖方式。在變異算子中,常以一定的變異概率(Pm)在群體中選取個體,隨機(jī)選擇個體的二進(jìn)制串中的某些位進(jìn)行由概率控制的變換(0與1互換)從而產(chǎn)生新的個體[2]。如果變異概率太小,就難以產(chǎn)生新的基因結(jié)構(gòu),太大又會使遺傳算法成了單純的隨機(jī)搜索,一般取Pm=0.1~0.2。在遺傳算法中,變異算子增加了群體中基因模式的多樣性,從而增加了群體進(jìn)化過程中自然選擇的作用,避免早熟現(xiàn)象的出現(xiàn)。
2.2基本遺傳算法的算法描述
用P(t)代表第t代種群,下面給出基本遺傳算法的程序偽代碼描述:
基本操作:
InitPop()
操作結(jié)果:產(chǎn)生初始種群,初始化種群中的個體,包括生成個體的染色體值、計(jì)算適應(yīng)度、計(jì)算對象值。
Selection()
初始條件:種群已存在。
操作結(jié)果:對當(dāng)前種群進(jìn)行交叉操作。
Crossover()
初始條件:種群已存在。
操作結(jié)果:對當(dāng)前種群進(jìn)行交叉操作。
Mutation()
初始條件:種群已存在。
對當(dāng)前種群進(jìn)行變異操作。
PerformEvolution()
初始條件:種群已存在且當(dāng)前種群不是第一代種群。
操作結(jié)果:如果當(dāng)前種群的最優(yōu)個體優(yōu)于上一代的最優(yōu)本,則將其賦值給bestindi,否則不進(jìn)行任何操作。
Output()
初始條件:當(dāng)前種群是最后一代種群。
操作結(jié)果:輸出bestindi的表現(xiàn)型以及對象值。
3 遺傳算法的缺點(diǎn)及改進(jìn)
遺傳算法有兩個明顯的缺點(diǎn):一個原因是出現(xiàn)早熟往往是由于種群中出現(xiàn)了某些超級個體,隨著模擬生物演化過程的進(jìn)行,這些個體的基因物質(zhì)很快占據(jù)種群的統(tǒng)治地位,導(dǎo)致種群中由于缺乏新鮮的基因物質(zhì)而不能找到全局最優(yōu)值;另一個主要原因是由于遺傳算法中選擇及雜交變異等算子的作用,使得一些優(yōu)秀的基因片段過早丟失,從而限制了搜索范圍,使得搜索只能在局部范圍內(nèi)找到最優(yōu)值,而不能得到滿意的全局最優(yōu)值[3]。為提高遺傳算法的搜索效率并保證得到問題的最優(yōu)解,從以下幾個方面對簡單遺傳算法進(jìn)行改進(jìn)。
3.1編碼方案
因?qū)崝?shù)編碼方案比二進(jìn)制編碼策略具有精度高、搜索范圍大、表達(dá)自然直觀等優(yōu)點(diǎn)數(shù)學(xué)建模論文,并能夠克服二進(jìn)制編碼自身特點(diǎn)所帶來的不易求解高精度問題、不便于反應(yīng)所求問題的特定知識等缺陷,所以確定實(shí)數(shù)編碼方案替代SGA中采用二進(jìn)制編碼方案[4]。
3.2 適應(yīng)度函數(shù)
采用基于順序的適應(yīng)度函數(shù),基于順序的適應(yīng)度函數(shù)最大的優(yōu)點(diǎn)是個體被選擇的概率與目標(biāo)函數(shù)的具體值無關(guān),僅與順序有關(guān)[5]。構(gòu)造方法是先將種群中所有個體按目標(biāo)函數(shù)值的好壞進(jìn)行排序,設(shè)參數(shù)β∈(0,1),基于順序的適應(yīng)度函數(shù)為:
(1)
3.3 選擇交叉和變異
在遺傳算法中,交叉概率和變異概率的選取是影響算法行為和性能的關(guān)鍵所在,直接影響算法的收斂性。在SGA中,交叉概率和變異概率能夠隨適應(yīng)度自動調(diào)整,在保持群體多樣性的同時保證了遺傳算法的收斂性。在自適應(yīng)基本遺傳算法中,pc和pm按如下公式進(jìn)行自動調(diào)整:
(2)
(3)
式中:fmax為群體中最大的適應(yīng)度值;fave為每代群體的平均適應(yīng)度值;f′為待交叉的兩個個體中較大的適應(yīng)度值;f為待變異個體的適應(yīng)度值;此處,只要設(shè)定k1、k2、k3、k4為(0,1)之間的調(diào)整系數(shù),Pc及Pm即可進(jìn)行自適應(yīng)調(diào)整。本文對標(biāo)準(zhǔn)的遺傳算法進(jìn)行了改進(jìn),改進(jìn)后的遺傳算法對交叉概率采用與個體無關(guān),變異概率與個體有關(guān)。交叉算子主要作用是產(chǎn)生新個體,實(shí)現(xiàn)了算法的全局搜索能力。從種群整體進(jìn)化過程來看,交叉概率應(yīng)該是一個穩(wěn)定而逐漸變小,到最后趨于某一穩(wěn)定值的過程;而從產(chǎn)生新個體的角度來看,所有個體在交叉操作上應(yīng)該具有同等地位,即相同的概率,從而使GA在搜索空間具有各個方向的均勻性。對公式(2)和(3)進(jìn)行分析表明,適應(yīng)度與交叉率和變異率呈簡單的線性映射關(guān)系。當(dāng)適應(yīng)度低于平均適應(yīng)度時,說明該個體是性能不好的個體數(shù)學(xué)建模論文,對它就采用較大的交叉率和變異率;如果適應(yīng)度高于平均適應(yīng)度,說明該個體性能優(yōu)良,對它就根據(jù)其適應(yīng)度值取相應(yīng)的交叉率和變異率龍?jiān)雌诳?/p>
當(dāng)個體適應(yīng)度值越接近最大適應(yīng)度值時,交叉概率和變異概率就越??;當(dāng)?shù)扔谧畲筮m應(yīng)度值時,交叉概率和變異概率為零。這種調(diào)整方法對于群體處于進(jìn)化的后期比較合適,這是因?yàn)樵谶M(jìn)化后期,群體中每個個體基本上表現(xiàn)出較優(yōu)的性能,這時不宜對個體進(jìn)行較大的變化以免破壞了個體的優(yōu)良性能結(jié)構(gòu);但是這種基本遺傳算法對于演化的初期卻不利,使得進(jìn)化過程略顯緩慢[6]。因?yàn)樵谘莼跗冢后w中較優(yōu)的個體幾乎是處于一種不發(fā)生變化的狀態(tài),而此時的優(yōu)良個體卻不一定是全局最優(yōu)的,這很容易導(dǎo)致演化趨向局部最優(yōu)解。這容易使進(jìn)化走向局部最優(yōu)解的可能性增加。同時,由于對每個個體都要分別計(jì)算Pc和Pm,會影響程序的執(zhí)行效率,不利于實(shí)現(xiàn)。
對自適應(yīng)遺傳算法進(jìn)行改進(jìn),使群體中具有最大適應(yīng)度值的個體的交叉概率和變異概率不為零,改進(jìn)后的交叉概率和變異概率的計(jì)算公式如式(4)和(5)所示。這樣,經(jīng)過改進(jìn)后就相應(yīng)地提高了群體中性能優(yōu)良個體的交叉概率和變異概率,使它們不會處于一種停滯不前的狀態(tài),從而使得算法能夠從局部最優(yōu)解中跳出來獲得全局最優(yōu)解[7]。
(4)
(5)
其中:fmax為群體中最大的適應(yīng)度值;fave為每代群體的平均適應(yīng)度值;f′為待交叉的兩個個體中較大的適應(yīng)度值;f為待變異個體的適應(yīng)度值;pc1為最大交叉概率;pm1為最大變異概率。
3.4 種群的進(jìn)化與進(jìn)化終止條件
將初始種群和產(chǎn)生的子代種群放在一起,形成新的種群,然后計(jì)算新的種群各個體的適應(yīng)度,將適應(yīng)度排在前面的m個個體保留,將適應(yīng)度排在后面m個個體淘汰數(shù)學(xué)建模論文,這樣種群便得到了進(jìn)化[8]。每進(jìn)化一次計(jì)算一下各個個體的目標(biāo)函數(shù)值,當(dāng)相鄰兩次進(jìn)化平均目標(biāo)函數(shù)之差小于等于某一給定精度ε時,即滿足如下條件:
(6)
式中,為第t+1次進(jìn)化后種群的平均目標(biāo)函數(shù)值,為第t次進(jìn)化后種群的平均目標(biāo)函數(shù)值,此時,可終止進(jìn)化。
3.5 重要參數(shù)的選擇
GA的參數(shù)主要有群里規(guī)模n,交叉、變異概率等。由于這些參數(shù)對GA性能影響很大,因此參數(shù)設(shè)置的研究受到重視。對于交叉、變異概率的選擇,傳統(tǒng)選擇方法是靜態(tài)人工設(shè)置。現(xiàn)在有人提出動態(tài)參數(shù)設(shè)置方法,以減少人工選擇參數(shù)的困難和盲目性。
4 結(jié)束語
遺傳算法作為當(dāng)前研究的熱點(diǎn),已經(jīng)取得了很大的進(jìn)展。由于遺傳算法的并行性和全局搜索等特點(diǎn),已在實(shí)際中廣泛應(yīng)用。本文針對傳統(tǒng)遺傳算法的早熟收斂、得到的結(jié)果可能為非全局最優(yōu)收斂解以及在進(jìn)化后期搜索效率較低等缺點(diǎn)進(jìn)行了改進(jìn),改進(jìn)后的遺傳算法在全局收斂性和收斂速度方面都有了很大的改善,得到了較好的優(yōu)化結(jié)果。
參考文獻(xiàn)
[1]邢文訓(xùn),謝金星.現(xiàn)代優(yōu)化計(jì)算方法[M].北京:清華大學(xué)出版社,1999:66-68.
[2]王小平,曹立明.遺傳算法理論[M].西安交通大學(xué)出版社,2002:1-50,76-79.
[3]李敏強(qiáng),寇紀(jì)淞,林丹,李書全.遺傳算法的基本理論與應(yīng)用[M].科學(xué)出版社, 2002:1-16.
[4]涂承媛,涂承宇.一種新的收斂于全局最優(yōu)解的遺傳算法[J].信息與控制,2001,30(2):116-138
[5]陳瑋,周激,流程進(jìn),陳莉.一種改進(jìn)的兩代競爭遺傳算法[J].四川大學(xué)學(xué)報(bào):自然科學(xué)版,2003.040(002):273-277.
[6]王慧妮,彭其淵,張曉梅.基于種群相異度的改進(jìn)遺傳算法及應(yīng)用[J].計(jì)算機(jī)應(yīng)用,2006,26(3):668-669.
[7]金晶,蘇勇.一種改進(jìn)的自適應(yīng)遺傳算法[J].計(jì)算機(jī)工程與應(yīng)用,2005,41(18):64-69.
[8]陸濤,王翰虎,張志明.遺傳算法及改進(jìn)[J].計(jì)算機(jī)科學(xué),2007,34(8):94-96
課程是高校教育教學(xué)活動的載體,是學(xué)生掌握理論基礎(chǔ)知識和提高綜合運(yùn)用知識能力的重要渠道,學(xué)生創(chuàng)新能力的形成必定要落實(shí)在課程教學(xué)活動的全過程中?!皵?shù)學(xué)建?!笔且婚T理論與實(shí)踐緊密結(jié)合的數(shù)學(xué)基礎(chǔ)課程,課程的許多案例來源于實(shí)際生活,其學(xué)習(xí)過程讓學(xué)生體驗(yàn)了數(shù)學(xué)與實(shí)際問題的緊密聯(lián)系。數(shù)學(xué)建模課程從教學(xué)理念及教學(xué)方法上有別于傳統(tǒng)的數(shù)學(xué)課程,它是將培養(yǎng)學(xué)生的創(chuàng)新實(shí)踐能力作為主要任務(wù),利用課程體系完成創(chuàng)新能力的培養(yǎng)。由于課程教學(xué)內(nèi)容系統(tǒng)性差,建模方法涉及多個數(shù)學(xué)分支,課程結(jié)束后還存在著學(xué)生面對實(shí)際問題無從下手解決的現(xiàn)象。通過深入研究課程教學(xué)體系,將傳授知識和實(shí)踐指導(dǎo)有機(jī)結(jié)合,實(shí)施以數(shù)學(xué)建模課程教學(xué)為核心,以競賽和創(chuàng)新實(shí)驗(yàn)為平臺的新課程教學(xué)模式。
一、數(shù)學(xué)建模課程對培養(yǎng)創(chuàng)新人才的作用
(一)提高實(shí)踐能力
數(shù)學(xué)建模課程案例主要來源于多領(lǐng)域中的實(shí)際問題,它不僅僅是單一的數(shù)學(xué)問題,具有數(shù)學(xué)與多學(xué)科交叉、融合等特點(diǎn)。課程要求學(xué)生掌握一般數(shù)學(xué)基礎(chǔ)知識,同時要進(jìn)一步學(xué)習(xí)如微分方程、概率統(tǒng)計(jì)、優(yōu)化理論等數(shù)學(xué)知識。這就需要學(xué)生有自主學(xué)習(xí)“新知識”的能力,還要具備運(yùn)用綜合知識解決實(shí)際問題的能力。因此,數(shù)學(xué)建模課程對于大學(xué)生自學(xué)能力和綜合運(yùn)用知識能力的培養(yǎng)具有重要作用。
(二)提高創(chuàng)新能力
數(shù)學(xué)建模方法是解決現(xiàn)實(shí)問題的一種量化手段。數(shù)學(xué)建模和傳統(tǒng)數(shù)學(xué)課程相比,是一種創(chuàng)新性活動。面對實(shí)際問題,根據(jù)數(shù)據(jù)和現(xiàn)象分析,用數(shù)學(xué)語言描述建模問題,再進(jìn)行科學(xué)計(jì)算處理,最后反饋到現(xiàn)實(shí)中解釋,這一過程沒有固定的標(biāo)準(zhǔn)模式,可以采用不同方法和思路解決同樣的問題,能鍛煉學(xué)生的想象力、洞察力和創(chuàng)新能力。
(三)提高科學(xué)素質(zhì)
面對復(fù)雜的實(shí)際問題,學(xué)生不僅要學(xué)會發(fā)現(xiàn)問題,還要將問題轉(zhuǎn)化為數(shù)學(xué)模型,利用數(shù)學(xué)方法和計(jì)算軟件提出方案用于解釋實(shí)際問題。由于數(shù)學(xué)建模知識的寬泛性,需要學(xué)生分工合作完成建模過程,各成員的知識結(jié)構(gòu)側(cè)重點(diǎn)有所不同,彼此溝通、討論有助于大學(xué)生相互交流與協(xié)作能力的培養(yǎng),最終的成果以科學(xué)研究論文的形式體現(xiàn),科學(xué)論文撰寫過程提高了學(xué)生科學(xué)研究的系統(tǒng)性。
二、基于數(shù)學(xué)建模課程教學(xué)全方位推進(jìn)創(chuàng)新能力培養(yǎng)的實(shí)踐
(一)分解教學(xué)內(nèi)容增強(qiáng)課程的適應(yīng)性
根據(jù)學(xué)生的接受能力及數(shù)學(xué)建模的發(fā)展趨勢,在保持課程理論體系完整性和知識方法系統(tǒng)性的基礎(chǔ)上,教學(xué)內(nèi)容分解為課堂講授與課后實(shí)踐兩部分。課堂教師講授數(shù)學(xué)建模的基礎(chǔ)理論和基本方法,精講經(jīng)典數(shù)學(xué)模型及建模應(yīng)用案例,啟發(fā)學(xué)生數(shù)學(xué)建模思維,激發(fā)學(xué)生數(shù)學(xué)建模興趣;課后學(xué)生自己動手完成課堂內(nèi)容擴(kuò)展、模型運(yùn)算及模型改進(jìn)等,教師答疑解惑。課堂教學(xué)注重?cái)?shù)學(xué)建模知識的學(xué)習(xí),課后教學(xué)重在知識的運(yùn)用。隨著實(shí)際問題的復(fù)雜化和多元化,基本的數(shù)學(xué)建模方法及計(jì)算能力滿足不了實(shí)際需求。課程教學(xué)中還增加了圖論、模糊數(shù)學(xué)等方法,計(jì)算機(jī)軟件等初級知識。
(二)融入新的教學(xué)方法提高學(xué)生的參與度
1.課堂教學(xué)融入引導(dǎo)式和參與式教學(xué)方法。數(shù)學(xué)建模涉及的知識很多是學(xué)生學(xué)過的,對學(xué)生熟悉的方法,教師以引導(dǎo)學(xué)生回顧知識、增強(qiáng)應(yīng)用意識為主,借助應(yīng)用案例重點(diǎn)講授問題解決過程中數(shù)學(xué)方法的應(yīng)用,引導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué)建模過程;對于學(xué)生不熟悉的方法,則要先系統(tǒng)講授方法,再分析講解方法在案例中的應(yīng)用,引導(dǎo)學(xué)生根據(jù)問題尋找方法。此外,為了增強(qiáng)學(xué)生學(xué)習(xí)的積極性和效果,組織1~2次專題研討,要求學(xué)生參與教學(xué)過程,教師須做精心準(zhǔn)備,選擇合適教學(xué)內(nèi)容、設(shè)計(jì)建模過程、引導(dǎo)學(xué)生討論、糾正錯誤觀點(diǎn)。
2.課后實(shí)踐實(shí)施討論式和合作式教學(xué)方法。在課后實(shí)踐教學(xué)中,提倡學(xué)生組成學(xué)習(xí)小組,教師參與小組討論共同解決建模問題。學(xué)生以主動者的角色積極參與討論、獨(dú)立完成建模工作,并進(jìn)行小組建模報(bào)告,教師給予點(diǎn)評和糾正。對那些沒有徹底解決的問題,鼓勵學(xué)生繼續(xù)討論完善。通過學(xué)生討論、教師點(diǎn)評、學(xué)生完善這一過程,極大地調(diào)動了學(xué)生參與討論、團(tuán)隊(duì)合作的熱情。同時,教師鼓勵學(xué)生自己尋找感興趣的問題,用數(shù)學(xué)建模去解決問題。
3.課程綜合實(shí)踐推進(jìn)研究式教學(xué)方法。指導(dǎo)學(xué)生在參加數(shù)學(xué)建模競賽、學(xué)習(xí)專業(yè)知識、做畢業(yè)設(shè)計(jì)及參與教師科研等工作中,學(xué)習(xí)深入研究建模解決實(shí)際問題的方法,通過多層次建模綜合實(shí)踐能提高分析問題、選擇方法、實(shí)施建模、問題求解、編程實(shí)踐、計(jì)算模擬的綜合能力,進(jìn)而提高創(chuàng)新能力。
(三)融合多種教學(xué)手段,提高課程的實(shí)效性
1.利用網(wǎng)站教育平臺實(shí)施線上課堂教學(xué)。線上教學(xué)要選取難易適中,不宜太專業(yè)化,便于自學(xué),并具有與課堂教學(xué)承上啟下功能,服務(wù)和鞏固課程的需要的內(nèi)容,利用互聯(lián)網(wǎng)云教育平臺,學(xué)習(xí)多媒體課件、教學(xué)視頻,及通過提供的相關(guān)資料來學(xué)習(xí)。教師還可通過網(wǎng)站問題、解答疑難、組織討論,學(xué)生通過網(wǎng)站學(xué)習(xí)知識、提交解答、參與討論。學(xué)生能更有效地利用零散時間,培養(yǎng)自我約束、管理時間的意識和能力。
2.充分利用多媒體課件與黑板書寫相結(jié)合的課堂教學(xué)手段。根據(jù)課堂教學(xué)要求,規(guī)劃設(shè)計(jì)制作課件與黑板書寫的具體內(nèi)容,同時連接好線上的學(xué)習(xí)成效推進(jìn)課堂教學(xué)。課件主要介紹問題背景、分析假設(shè)、建模方法、算法程序和模型結(jié)果,而模型推導(dǎo)和分析求解的具體過程,則通過板書展示增加了課堂教學(xué)的信息量,也促進(jìn)學(xué)生消化理解難點(diǎn)和技巧。
3.指導(dǎo)學(xué)生小組學(xué)習(xí)的課后教學(xué)手段。指導(dǎo)學(xué)生以學(xué)習(xí)小組為單位開展建模學(xué)習(xí)與實(shí)踐活動,提倡不同專業(yè)學(xué)生之間的相互學(xué)習(xí)、取長補(bǔ)短,通過學(xué)習(xí)與討論增強(qiáng)學(xué)生自主學(xué)習(xí)的意識和能力。數(shù)學(xué)建模過程不是解應(yīng)用題,雖然沒有唯一途徑,但也有規(guī)律可循,在小組學(xué)習(xí)中發(fā)揮團(tuán)隊(duì)力量、提高建模能力。
(四)構(gòu)建多層次建模問題,培養(yǎng)學(xué)生創(chuàng)新能力
案例選擇、教學(xué)設(shè)計(jì)、知識銜接是數(shù)學(xué)建模在創(chuàng)新型人才培養(yǎng)中的關(guān)鍵。
1.課堂教學(xué)建模問題。課堂教學(xué)通過應(yīng)用案例講解有關(guān)建模方法,所選問題包括兩類:一是基本類型,圍繞大學(xué)數(shù)學(xué)課程主要知識點(diǎn)的簡單建模問題,如物理、日常生活等傳統(tǒng)領(lǐng)域中的建模問題,學(xué)生既能學(xué)習(xí)建模方法又能感受數(shù)學(xué)知識的應(yīng)用價值;二是綜合類型,涵蓋幾個數(shù)學(xué)知識點(diǎn)的綜合建模問題,如SAS的傳播。問題要有一定思考的空間,且在教師的分析和引導(dǎo)下學(xué)生能夠展開討論。
2.課后實(shí)踐建模問題。課后學(xué)生要以學(xué)習(xí)小組為單位完成教師布置的數(shù)學(xué)建模問題。問題要圍繞課堂教學(xué)內(nèi)容,難易適當(dāng),層次可分,以便學(xué)生選擇和討論。同時,問題還要有明確的實(shí)際背景,能將數(shù)據(jù)處理、數(shù)值計(jì)算有機(jī)結(jié)合起來。另一方面,鼓勵學(xué)生學(xué)會發(fā)現(xiàn)日常生活和專業(yè)學(xué)習(xí)中的建模問題,引導(dǎo)學(xué)生提出正確的思考方向,幫助學(xué)生給出解決問題的方案。
(五)組織多元化過程考核,注重學(xué)習(xí)階段效果
1.課堂內(nèi)外考試與網(wǎng)上在線考試相結(jié)合的過程考核。教師按照教學(xué)要求將考試可以分解兩種形式:課堂內(nèi)結(jié)合應(yīng)用案例組織課堂討論,通過學(xué)生參與情況實(shí)施考核;課堂外針對基礎(chǔ)知識可實(shí)施在線測試,對綜合知識點(diǎn)設(shè)計(jì)一定量的大作業(yè),根據(jù)學(xué)生完成情況實(shí)施考核,也允許學(xué)生自主選題完成大作業(yè)。
2.課程教學(xué)結(jié)束的綜合考核。課程綜合考核重點(diǎn)在于測試學(xué)生知識綜合運(yùn)用能力,可以采取兩種形式之一。一是集中考試法,試題包括有標(biāo)準(zhǔn)答案的基礎(chǔ)知識、課堂講授的建模案例、完全開放的實(shí)際問題;考試采取“半開卷”形式,即可以攜帶一本教材,但不能與他人討論。二是建模競賽實(shí)踐的考核法。數(shù)學(xué)建模選修課期間剛好組織東北三省數(shù)學(xué)建模聯(lián)賽和校內(nèi)數(shù)學(xué)建模競賽,鼓勵學(xué)生參加競賽,依據(jù)競賽論文實(shí)施考核。
在考核成績評定上,采用綜合計(jì)分方式,弱化期末考核權(quán)重,加大過程考核分量,注重過程學(xué)習(xí),提高考核客觀性。
(六)教學(xué)團(tuán)隊(duì)建設(shè)
當(dāng)需要從定量的角度分析和研究一個實(shí)際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言作表述來建立數(shù)學(xué)模型。
建模比賽的一般分工是數(shù)學(xué)模型的建立、程序編寫與擬合、論文的敘述。其中論文是評定參賽隊(duì)伍成績的好壞、高低、獲獎級別的唯一依據(jù),并且也是每組參賽期間成果的結(jié)晶,這是相當(dāng)重要的一部分。那么今天我們就來分享一下有關(guān)建模論文的寫作的一些注意事項(xiàng)。
首先
論文的評閱原則是
假設(shè)的合理性 ;建模的創(chuàng)造性;
結(jié)果的合理性 ;表述的清晰性。
在寫作的時候可以按照這些要點(diǎn)來給自己一個大概的估計(jì)。
我們在寫論文的時候,一般是按如下的結(jié)構(gòu):
1.摘要
2.問題的敘述,問題的分析,背景的分析等
3.模型的假設(shè),符號說明
4.模型的建立(問題分析,公式推導(dǎo),基本模型,最終或簡化模型等)
5.模型的求解
6.模型檢驗(yàn):結(jié)果表示、分析與檢驗(yàn),誤差分析,……
7.模型評價:特點(diǎn),優(yōu)缺點(diǎn),改進(jìn)方法,推廣……
8.參考文獻(xiàn)
9.附錄:計(jì)算框圖、詳細(xì)圖表,……
摘要是整篇論文最精華的部分,也是評閱人最關(guān)注的部分。在寫摘要時,我們首先要對這個模型進(jìn)行數(shù)學(xué)歸類,并且通過之前和隊(duì)友一起進(jìn)行建模過程中對整體思路有著比較清楚的了解,然后闡述模型的優(yōu)點(diǎn)、算法特點(diǎn)等,最后對主要結(jié)果進(jìn)行說明,即回答題目所問的全部問題。
對于模型的建立,基本原則是實(shí)用、有效,因?yàn)槲覀兘⒛P褪菫榱私鉀Q實(shí)際問題的,而不是追求單純理論數(shù)學(xué)上的“高大上”。能用初等方法解決就不用高級方法;能用簡單方法解決就不用復(fù)雜方法;能用被更多人看懂、理解的方法就不用只能少數(shù)人看懂、理解的方法。
數(shù)學(xué)建模鼓勵創(chuàng)新,一般出現(xiàn)在模型本身、簡化優(yōu)化的好方法好策略、模型求解、模型檢驗(yàn)甚至是模型推廣中。切忌為了標(biāo)新立異而離題。在闡述建模過程時盡可能使用專業(yè)的術(shù)語,分析要中肯、確切,表述簡明,關(guān)鍵步驟要列出。
探究式教學(xué)法,不同于傳統(tǒng)將知識直接由老師進(jìn)行傳授的教學(xué)方法,而將其重心放在學(xué)生的“探與究”上?!疤健笔侵仡^,學(xué)生在新接觸某個概念和原理時,教師只提供事例和問題,學(xué)生通過查閱、觀察、記錄、實(shí)驗(yàn)等途徑獨(dú)立探索?!熬俊笔呛诵?,學(xué)生在獨(dú)立探索的基礎(chǔ)上,通過思考、討論自行發(fā)現(xiàn)掌握相應(yīng)的原理和結(jié)論。最后老師結(jié)合學(xué)生的探究過程對他們的結(jié)論進(jìn)行評價和矯正。在探究過程中,始終強(qiáng)調(diào)以學(xué)生為主體,學(xué)生的自主學(xué)習(xí)能力都得到加強(qiáng),相比被動接受教師傳授的知識和結(jié)論,通過這種方式獲取的知識,學(xué)生理解更透徹,掌握更牢固。數(shù)學(xué)建模課程教學(xué)中大量源于實(shí)際生活的實(shí)例,也使得這門課程在教學(xué)手段和教學(xué)形式上的得以有大量創(chuàng)新,探究式的教學(xué)模式尤其適合在本課程的教學(xué)中使用,筆者長期承擔(dān)數(shù)學(xué)建模課程的教學(xué)工作和指導(dǎo)學(xué)生開展數(shù)學(xué)建模競賽及有關(guān)活動,結(jié)合多年的實(shí)踐談一談。
探究過程的具體實(shí)施
問題驅(qū)動 探究過程的驅(qū)動是問題,學(xué)生的學(xué)習(xí)活動圍繞教師設(shè)計(jì)的問題展開。教師在這里要做的是,課前根據(jù)教學(xué)目的和內(nèi)容,精心挑選有趣,又難度適宜的問題。例如,在一堂數(shù)學(xué)建模課中,我們以身邊的一個具體實(shí)例來提出問題:通常1公斤的面,1公斤的餡,包100個湯圓;今天1公斤面不變,餡比1公斤多了,問應(yīng)多包幾個,每個包小一點(diǎn),還是應(yīng)少包幾個,每個包大一點(diǎn)?實(shí)踐探索 這是探究過程的關(guān)鍵環(huán)節(jié),在教師的組織下,學(xué)生自己動手實(shí)踐如何制訂研究計(jì)劃,如何收集必要的資料和有關(guān)的研究方法?;谂囵B(yǎng)學(xué)生團(tuán)隊(duì)合作精神的目的,這個過程可將學(xué)生分組來完成。例如:包湯圓的問題中,引導(dǎo)學(xué)生把問題梳理和抽象出來,一張面積為S的皮,可以包體積為V的餡,如今把這張面積為S的皮,分成n張面積為s的皮,每張面積為s的皮可以包體積為v的餡,那么問題就轉(zhuǎn)化為了討論,究竟是V大還是nv大的問題了。這個過程中,一定要讓學(xué)生思考,是不是需要某些合理的假設(shè),如:不論面皮大小,其厚度都應(yīng)該一致;不論湯圓大小,其形狀都一致(這兩個假設(shè)很關(guān)鍵)。思考討論 學(xué)生把通過實(shí)踐探索得到的資料進(jìn)行思考、梳理、總結(jié),形成自己的結(jié)論。各團(tuán)隊(duì)就同一問題將自己的結(jié)論清楚地表達(dá)出來,針對各種不同的觀點(diǎn),共同討論。評價矯正 在集體討論、辯論過程中,教師適時給予評價和矯正,分析獨(dú)特,立意清晰的給予肯定,觀點(diǎn)模糊的給予指正,通過融洽的學(xué)術(shù)交流使大家發(fā)現(xiàn)自己的問題所在,不準(zhǔn)確、不深入的地方繼續(xù)完善。
探究式教學(xué)中應(yīng)注意的問題
隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨(dú)立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認(rèn)為理論性太強(qiáng),與實(shí)際脫節(jié)嚴(yán)重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實(shí)際問題的能力,所以,進(jìn)行數(shù)學(xué)教學(xué)改革勢在必行。數(shù)學(xué)建??膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實(shí)際問題的能力,通過數(shù)模方法對實(shí)際問題進(jìn)行巧妙處理,讓學(xué)生體會到數(shù)學(xué)不僅能傳播理論知識和求解一些數(shù)學(xué)問題,還可將其應(yīng)用到實(shí)際問題中,讓學(xué)生看到一些實(shí)際模型的來龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗(yàn)學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟(jì)的團(tuán)隊(duì)合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團(tuán)隊(duì)合作精神對于獨(dú)立學(xué)院學(xué)生將來進(jìn)入社會十分重要,這也是衡量獨(dú)立學(xué)院辦學(xué)成功與否的一個方面。因此,獨(dú)立學(xué)院的人才培養(yǎng)目標(biāo)定位,既要達(dá)到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨(dú)立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。
二、數(shù)學(xué)模型融入數(shù)學(xué)課堂教學(xué)的必要性
(一)人才培養(yǎng)創(chuàng)新的需要
根據(jù)獨(dú)立學(xué)院人才培養(yǎng)目標(biāo)和實(shí)際情況,有針對性的加大基礎(chǔ)課和實(shí)踐環(huán)節(jié)教學(xué)的比重,側(cè)重于實(shí)踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實(shí)驗(yàn)、實(shí)踐教學(xué)內(nèi)容,加強(qiáng)與社會實(shí)體的聯(lián)系。力求培養(yǎng)出具有實(shí)際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個實(shí)際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學(xué)問題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實(shí)際問題并接受客觀實(shí)際的檢驗(yàn)。數(shù)學(xué)建模能彌補(bǔ)傳統(tǒng)數(shù)學(xué)教學(xué)在實(shí)際應(yīng)用方面的不足,促進(jìn)數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動學(xué)生的學(xué)習(xí)興趣,在計(jì)算機(jī)應(yīng)用能力、實(shí)踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來能更好地適應(yīng)工作崗位。
(二)高校教學(xué)改革的需要
當(dāng)今社會信息高度發(fā)達(dá),競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時間都集中學(xué)習(xí)書本知識,很少有機(jī)會接觸社會,也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點(diǎn),很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對獨(dú)立學(xué)院的學(xué)生來說,學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學(xué)生通過自主的學(xué)習(xí),把實(shí)際的問題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨(dú)立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。
(三)學(xué)生參加數(shù)學(xué)建模競賽的需要
獨(dú)立學(xué)院學(xué)生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競賽來提高自己。全國大學(xué)生數(shù)學(xué)建模競賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對數(shù)學(xué)公式提起了興趣,還有助于獨(dú)立學(xué)院學(xué)生在全國大學(xué)生數(shù)學(xué)建模競賽中取得優(yōu)異成績。
三、結(jié)語